skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gilbert, P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The cosmic microwave background (CMB) photons that scatter off free electrons in the large-scale structure induce a linear polarization pattern proportional to the remote CMB temperature quadrupole observed in the electrons' rest frame. The associated blackbody polarization anisotropies are known as the polarized Sunyaev Zel'dovich (pSZ) effect. Relativistic corrections to the remote quadrupole field give rise to a non-blackbody polarization anisotropy proportional to the square of the transverse peculiar velocity field; this is the kinetic polarized Sunyaev Zel'dovich (kpSZ) effect. In this paper, we forecast the ability of future CMB and galaxy surveys to detect the kpSZ effect, finding that a statistically significant detection is within the reach of planned experiments. We further introduce a quadratic estimator for the square of the peculiar velocity field based on a galaxy survey and CMB polarization. Finally, we outline how the kpSZ effect is a probe of cosmic birefringence and primordial non-Gaussianity, forecasting the reach of future experiments. 
    more » « less
  2. Abstract We forecast the number of galaxy clusters that can be detected via the thermal Sunyaev–Zel’dovich (tSZ) signals by future cosmic microwave background (CMB) experiments, primarily the wide area survey of the CMB-S4 experiment but also CMB-S4's smaller de-lensing survey and the proposed CMB-HD experiment. We predict that CMB-S4 will detect 75,000 clusters with its wide survey of f sky = 50% and 14,000 clusters with its deep survey of f sky = 3%. Of these, approximately 1350 clusters will be at z ≥ 2, a regime that is difficult to probe by optical or X-ray surveys. We assume CMB-HD will survey the same sky as the S4-Wide, and find that CMB-HD will detect three times more overall and an order of magnitude more z ≥ 2 clusters than CMB-S4. These results include galactic and extragalactic foregrounds along with atmospheric and instrumental noise. Using CMB-cluster lensing to calibrate the cluster tSZ–mass scaling relation, we combine cluster counts with primary CMB to obtain cosmological constraints for a two-parameter extension of the standard model (ΛCDM + ∑ m ν + w 0 ). In addition to constraining σ ( w 0 ) to ≲1%, we find that both surveys can enable a ∼2.5–4.5 σ detection of ∑ m ν , substantially strengthening CMB-only constraints. We also study the evolution of the intracluster medium by modeling the cluster virialization v( z ) and find tight constraints from CMB-S4, with further factors of three to four improvement for CMB-HD. 
    more » « less
  3. Abstract While gridded seasonal pressure reconstructions poleward of 60°S extending back to 1905 have been recently completed, their skill has not been assessed prior to 1958. To provide a more thorough evaluation of the skill and performance in the early 20th century, these reconstructions are compared to other gridded datasets, historical data from early Antarctic expeditions, ship records, and temporary bases. Overall, the comparison confirms that the reconstruction uncertainty of 2–4 hPa (evaluated after 1979) over the Southern Ocean is a valid estimate of the reconstruction error in the early 20th century. Over the interior and near the coast of Antarctica, direct comparisons with historical data are challenged by elevation‐based reductions to sea level pressure. In a few cases, a simple linear adjustment of the reconstruction to sea level matches the historical data well, but in other cases, the differences remain greater than 10 hPa. Despite these large errors, comparisons with continuous multi‐season observations demonstrate that aspects of the interannual variability are often still captured, suggesting that the reconstructions have skill representing variations on this timescale, even if it is difficult to determine how well they capture the mean pressure at these higher elevations. Additional comparisons with various 20th‐century reanalysis products demonstrate the value of assimilating the historical observations in these datasets, which acts to substantially reduce the reanalysis ensemble spread, and bring the reanalysis ensemble mean within the reconstruction and observational uncertainty. 
    more » « less